
Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

15-12-2016 Final Report 01Sep06 - 09May11

Final Report for Geometric Observers & Particle Filtering for Controlled
Active Vision

49414-NS.1Allen R. Tannenbaum

Georgia Tech Research Corporation
505 Tenth Street NW
Atlanta, GA 30332-0420

US Army Research Office
PO Box 12211
RTP, NC 27709-2211

Distribution is Unlimited.

Curvature driven flows based on the the minimization of certain geometric functionals have been
used for a number of problems in visual control and computer vision in the past few years [103,
88, 109]. These flows themselves are very much motivated by ideas in optimal control; see [69].
We have summarized some of the key flows which we will need in the sequel.

Final Report

U

Allen R. Tannenbaum



Final Report for Geometric Observers and Particle Filtering for
Controlled Active Vision

by

Allen R. Tannenbaum
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia
(404) 894-7574

1



Table of Contents

Contents

1 Statement of Problem 3

2 Summary of Key Results 4
2.1 Brief Review of Geometric Flows in Vision and Image Processing . . . . . . . . . . 4

2.1.1 Algorithms and PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Curve Evolution Using Level Sets . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Active Vision and Visual Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Snakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Geometric Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Conformal (Geodesic) Active Contours . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Conformal Area Minimizing Flows . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Registration and Optimal Transport . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Variational Approach to Monge-Kantorovich Problem . . . . . . . . . . . . 10
2.4.3 Other Applications of Optimal Transport . . . . . . . . . . . . . . . . . . . 12

3 Bibliography 12

2



1 Statement of Problem

The key objective of this project was the development of new methodologies for employing visual
information in a feedback loop, the underlying problem of controlled active vision. Controlled
active vision, and in particular visual tracking requires the integration of techniques from control
theory, signal processing, and computer vision. For some time now the role of control theory in
vision has been recognized. In particular, the branches of control that deal with system uncertainty,
namely adaptive and robust, have been proposed as essential tools in coming to grips with the
problems of both machine and biological vision.

Visual tracking provides a fundamental example of the need for controlled active vision. While
tracking in the presence of a disturbance is a classical control problem, visual tracking raises new
issues. First since cameras are part of the system, one must consider the nature of the disturbance
from imaging sensors. The feedback signal may require some interpretation of the image, e.g.,
segmentation of a target from its background, or an inference about an occluder. In this project, we
expressly emphasized active vision, because the result may be viewpoint dependent. In particular,
calibration may influence the control law. Finally, as visual processing becomes more complex, the
issue of processing time arises. Each of these problems must be answered before target detection,
and visually-mediated control can be provided for advanced weapon systems.

There are a number of technical problems connected with using vision in a closed loop setting.
In general, many of the mathematical formulations of the key issues of image understanding may
be ill-posed. Many basic vision tasks such as segmentation and a robust theory of shape remain
largely unsolved. For visual tracking, real-time processing becomes a major concern. Despite these
formidable obstacles, progress is being made especially in integrating control ideas into the vision
framework. Control is very powerful in treating uncertainty, and with the newer partial differential
equation methodologies, there is a strong mathematical and systems-theoretic fit. In fact many of
the recent curvature flows may be derived from principles of optimal control. Until very recently,
much of the control work in vision was performed by researchers in computer vision usually
with a computer science background. Now, however, researchers with a strong control/systems
background are getting more actively involved given the opportunities for modern control ideas in
vision. We believe that this welcome development will significantly help in alleviating many of the
formidable problems remaining in using visual information in a feedback loop, and having more
reliable robust systems in which the primary sensor is based largely on some imaging device.

The prevalence of biological vision in even very simple organisms, indicates its inherent util-
ity for man-made devices. Cameras are rather simple, reliable passive sensing devices which are
quite inexpensive per bit of data. Furthermore vision can offer information at a high rate with
high resolution with a wide field of view and accuracy capturing multispectral information. Fi-
nally cameras can be used in a more active manner. Namely, one can include motorized lenses
and mounted on mobile platforms which can actively explore the surrounds and suitably adapt
their sensing capabilities. Computer vision has formulated several approaches for interpreting the
signals, opening the possibility that control laws can be based on more abstracted descriptions.
These problems all become manifest when one attempts to use a visual sensor in an uncertain
environment, and to feed back in some manner the information. These issues represent some of
the main challenges for our research in controlled active vision.

A major goal of our program is to ensure that our research is directly driven by applications
and that our research results have a direct impact on the military and industrial base. Thus we
need to ensure that all of the mathematically based results are amenable to robust and reliable
computer implementations.

In this research program, we continued the use of curvature-driven partial differential equations
to explore problems in visual control and controlled active vision, but we have also considered the
sensor/estimation problem much more carefully. This has led to a new approach for tracking in
which particle filtering was combined with level set ideas for the first time.
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2 Summary of Key Results

2.1 Brief Review of Geometric Flows in Vision and Image Processing

Curvature driven flows based on the the minimization of certain geometric functionals have been
used for a number of problems in visual control and computer vision in the past few years [103,
88, 109]. These flows themselves are very much motivated by ideas in optimal control; see [69].
We will summarize some of the key flows below which we will need in the sequel.

2.1.1 Algorithms and PDEs

We briefly review the major concepts involved in using partial differential equations (PDEs) for
image processing and computer vision.

As explained in detail in [20], one can think of an image as a map I : D → C, i.e., to any point
x in the domain D, I associates a “color” I(x) in a color space C. For ease of presentation we will
mainly restrict ourselves to the case of a two-dimensional gray scale image which we can think of
as a function from a domain D = [0, 1]× [0, 1] ⊂ R2 to the unit interval C = [0, 1].

The algorithms all involve solving the initial value problem for some PDE for a given amount
of time. The solution to this PDE can be either the image itself at different stages of modification,
or some other object (such as a closed curve delineating object boundaries) whose evolution is
driven by the image.

For example, introducing an artificial time t, the image can be deformed according to

∂I

∂t
= F [I], (1)

where I(x, t) : D× [0, T ) → C is the evolving image, F is an operator which characterizes the given
algorithm, and the initial condition is the input image I0. The processed image is the solution
I(x, t) of the differential equation at time t. The operator F usually is a differential operator,
although its dependence on I may also be nonlocal.

Similarly, one can evolve a closed curve C ⊂ D representing the boundaries of some planar
shape (C need not be connected and could have several components). In this case, the operator
F specifies the normal velocity of the curve that it deforms. In many cases this normal velocity is
a function of the curvature κ of C, and of the image I evaluated on C. A flow of the form

∂C
∂t

= F(I, κ)N (2)

is obtained, where N is the inward unit normal to the curve C.
Very often, the deformation is obtained as the steepest descent for some energy functional. For

example, the energy

E(I) =
1
2

∫
‖∇I‖2 dxdy (3)

and its associated steepest descent, the heat equation,

∂I

∂t
= ∆I (4)

correspond to the classical Gaussian smoothing.
The use of PDEs allows for the modelling of the crucial but poorly understood interactions

between top-down and bottom-up vision. For example, in a variational framework, an energy E is
defined globally while the corresponding operator F will influence the image locally. Algorithms
defined in terms of PDEs treat images as continuous rather than discrete objects. This has a
simplifying effect on the formalism, which becomes grid independent. On the other hand models
based on nonlinear PDEs may be much harder to rigorously analyze and implement.
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2.1.2 Curve Evolution Using Level Sets

Geometric active contours evolving according to an edge based and/or region based energy flow
are very commonly used for image segmentation. In these methods, starting from an initial esti-
mate, the curve deforms under the influence of various forces until it fits the object boundaries.
The curve evolution equation is obtained by reducing an energy Eimage as fast as possible, i.e., by
doing a gradient descent on Eimage. In general, Eimage may depend on a combination of image
based features and external constraints (smoothness, shape, etc.); see [82], [21] and the references
therein. The level set methods of Osher and Sethian [87] offer a natural and numerically reliable
implementation of such curve evolution equations. Level sets have the advantage of being param-
eter independent (i.e., they are implicit representation of the curve) and can handle topological
changes in a very natural way.

We now briefly go over the level set representation of a given curve evolution equation. Let
C(p, t) : [0, 1] × [0, T ) → R2 be a family of closed curves (i.e., C(0, t) = C(1, t) for all t ∈ [0, T )),
satisfying the following evolution equation:

∂C
∂t

= VN (5)

where, t is the time parameter. The basic idea of the level set approach is to embed the contour
C(p, t) as the zero level set of a smooth and Lipschitz continuous function Φ : R2 × [0, T ) → R.
Assume that Φ is negative in the interior and positive in the exterior of the zero level set. We
consider the zero level set, defined by

{Z(t) ∈ R2 : Φ(Z, t) = 0} . (6)

We have to find an evolution equation of Φ, such that the evolving curve Ct is given by the evolving
zero level Z(t). By differentiating (6) with respect to t we obtain:

∇Φ(Z, t) · ∂Z

∂t
+

∂Φ
∂t

= 0 . (7)

Note that for the zero level set, the following relation holds:

∇Φ
‖ ∇Φ ‖

= −N . (8)

In this equation, the left side uses terms of the surface Φ, while the right side is related to the
curve C. The combination of equations (5) to (8) gives

∂Φ
∂t

= V ‖ ∇Φ ‖ , (9)

and the curve C, evolving according to (5), is obtained by the zero level set of the function Φ,
which evolves according to (9). This is a Hamilton-Jacobi equation which can be analyzed using
viscosity theory [27]. Finally, given an initial curve, one must generate an initial level set function.
A well known scheme [87] is to use a signed distance function.

2.2 Active Vision and Visual Tracking

The use of active contour methods was essential in our research program in controlled active vision.
We now go over some of the key results pertaining to this methodology.
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2.2.1 Snakes

The concept of snakes (also called deformable or active contours) was introduced by Witkin,
Kass and Terzopoulos [65], and later developed by a number of researchers (see [26] and the
references therein). They may be used for edge detection in the following manner. Given an
image I : D ⊂ R2 → C, one subjects an initial simple closed parameterized curve C : [0, 1] → D to
a steepest descent flow for an energy functional of the form:

E(C) =
∫ 1

0

{
1
2
w1(p)‖Cpp‖2 +

1
2
w2(p)‖Cp‖2 + W (C(p))

}
dp. (10)

(Here the p subscript indicates differentiation with respect to p.) The first two terms control the
smoothness of the active contour C. The contour interacts with the image through the potential
function W : D → R which is chosen to be small near the edges, and large everywhere else (it is
a decreasing function of some edge detector). For example, one could take:

W (x) =
1

1 + ‖∇Gσ ∗ I(x)‖2
, (11)

where Gσ denotes a Gaussian filter of standard deviation σ.
Minimizing E will therefore attract C toward the edges. The gradient flow is the fourth order

nonlinear parabolic equation

∂C
∂t

= − (w2(p)Cpp)pp + (w1(p)Cp)p +∇W (C(p, t)). (12)

This approach gives reasonable results; see [78] for a survey of snakes in medical image analysis.
One limitation however is that the active contour or snake cannot change topology, i.e., it starts
out being a topological circle and it will always remain a topological circle and will not be able
to break up into two or more pieces, even if the image would contain two unconnected objects
and this would give a more natural description of the edges. Special ad hoc procedures have been
developed in order to handle splitting and merging [79].

2.2.2 Geometric Active Contours

Another disadvantage of the snake method is that it explicitly involves the parametrization of the
active contour C, while there is no obvious relation between the parametrization of the contour
and the geometry of the objects to be captured. Geometric models have been developed in [18] to
address this issue.

As in the snake framework, one deforms the active contour C by a velocity which is essentially
defined by a curvature term, and a constant inflationary term weighted by a stopping function
W . By formulating everything in terms of quantities which are invariant under reparametrization
(such as the curvature and normal velocity of C) one obtains an algorithm which does not depend
on the parametrization of the contour. In particular, it can be implemented using level sets.

More specifically, the model of [18] is given by

V = W (x)(κ + c), (13)

where both the velocity V and the curvature κ are measured using the inward normal N for C.
Here, as previously, W is small at edges and large everywhere else, and c is a constant, called the
inflationary parameter. When c is positive, it helps push the contour through concavities, and
can speed up the segmentation process. When it is negative, it allows expanding “bubbles,” i.e.,
contours which expand rather than contract to the desired boundaries. We should note that there
is no canonical choice for the constant c, which has to be determined experimentally.
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In practice, C is deformed using the Osher-Sethian level set method described in Section 2.1.2.
Geometric active contours have the advantage that they allow for topological changes (splitting
and merging) of the active contour C. The main problem with this model is that the desired edges
are not steady states for the flow (13). The effect of the factor W (x) is merely to slow the evolving
contour Ct down as it approaches an edge, but it is not the case that the Ct will eventually converge
to anything like the sought-for edge as t →∞. Some kind of artificial intervention is required to
stop the evolution when Ct is close to an edge.

2.2.3 Conformal (Geodesic) Active Contours

In [66, 19], the authors propose a novel technique that is both geometric and variational. In this
approach one defines a Riemannian metric gW on D from a given image I : D → R, by conformally
changing the standard Euclidean metric to,

gW = W (x)2
∥∥dx

∥∥2
. (14)

Here W is defined as above in (11). The length of a curve in this metric is

LW (C) =
∫
C

W (C(s)) ds. (15)

(Here ds denotes arc-length.) Curves which minimize this length will prefer to be in regions where
W is small, which is exactly where one would expect to find the edges. So, to find edges, one
should minimize the W -weighted length of a closed curve C, rather than some “energy” of C (which
depends on a parametrization of the curve).

To minimize LW (C), one computes a gradient flow in the L2 sense. Since the first variation of
this length functional is given by

dLW (C)
dt

= −
∫
C

V
{
Wκ−N · ∇W

}
ds,

where V is the normal velocity measured in the Euclidean metric, and N is the Euclidean unit
normal, the corresponding L2 gradient flow is

Vconf = Wκ−N · ∇W. (16)

Note that this is not quite the curve shortening flow in the sense of [48, 49] on R2 given the
Riemannian manifold structure defined by the conformally Euclidean metric gW . Indeed, a simple
computation shows that in that case one would have

V = W−2
(
Wκ−N · ∇W

)
. (17)

Thus the term “geodesic active contour” used in [19] is a bit of a misnomer, and so we prefer the
term “conformal active contour” as in [66]. However, following standard practice in the vision
community, we will use both terms interchangeably in this report.

Contemplation of the conformal active contours leads to another interpretation of the concept
“edge.” Using the landscape metaphor one can describe the graph of W as a plateau (where ||∇I||
is small) in which a canyon has been carved (where ||∇I|| is large). The edge is to be found at the
bottom of the canyon. Now if W is a Morse function, then one expects the “bottom of the canyon”
to consist of local minima of W alternated by saddle points. The saddle points are connected to
the minima by their unstable manifolds for the gradient flow of W (the ODE x′ = −∇W (x).)
Together these unstable manifolds form one or more closed curves which one may regard as the
edges which are to be found.
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Comparing (16) to the evolution of the geometric active contour (13) we see that we have the
new term −N · ∇W , the normal component of −∇W . If the contour Ct were to evolve only by
V = −N · ∇W , then it would simply be deformed by the gradient flow of W . If W is a Morse
function, then one can use the λ-lemma from dynamical systems [89, 81] to show that for a generic
choice of initial contour the Ct will converge to the union of unstable manifolds “at the bottom
of the canyon,” possibly with multiplicity more than one. The curvature term in (13) counteracts
this possible doubling up and guarantees that Ct will converge smoothly to some curve which is a
smoothed out version of the heteroclinic chain.

2.2.4 Conformal Area Minimizing Flows

Typically, in order to get expanding bubbles, an inflationary term is added in the model (16) as
in (13). Many times segmentations are more easily performed by seeding the image with bubbles
rather than contracting snakes. The conformal active contours will not allow this since very small
curves will simply shrink to points under the flow (16). To get a curve evolution which will force
small bubbles to expand and converge toward the edges, it is convenient to subtract a weighted
area term from the length functional LW , namely

AW (C) =
∫

RC

W (x)dx

where dx is 2D Lebesgue measure, and RC is the region enclosed by the contour C.
The first variation of this weighted area is [106, 92]):

d
dt
AW (Ct) = −

∫
Ct

W (C(s))V ds (18)

where, as before, V is the normal velocity of Ct measured with the inward normal.
The functional which one now tries to minimize is

EW (C) = LW (C) + cAW (C), (19)

where c ∈ R is a constant called the inflationary parameter.
To obtain steepest descent for EW one sets

Vact = Vconf + cW =
(
κ + c

)
W (x)−N · ∇W. (20)

For c = 1 this is a conformal length/area minimizing flow (see [106]). As in the model of [18]
the inflationary parameter c may be chosen as positive (snake or inward moving flow) or negative
(bubble or outward moving flow).

In practice, for expanding flows (negative c, weighted area maximizing flow), one expands the
bubble just using the inflationary part

V = cW

until the active contour is sufficiently large, and then “turns on” the conformal part Vconf which
brings the contour to its final position. Again as in [18], the curvature part of Vact also acts
to regularize the flow. Finally, there is a detailed mathematical analysis of (20) in [66] as well
as extensions to three dimensional space in which case the curvature κ is replaced by the mean
curvature H in equation (20).

2.3 Particle Filters

We have proposed the use of particle filters in conjunction with geometric active contours.
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Let xt ∈ Rn be a state vector evolving according to the following equation:

xt+1 = ft(xt, ut)

where ut is i.i.d. random noise with known pdf. At discrete times, observations Yt ∈ Rp become
available. These measurements are related to the state vector via the observation equation:

Yt = ht(xt, vt)

where vt is measurement noise which is known a priori. It is assumed that the initial state
distribution denoted by π0(dx), the state transition kernel by Kt(xt, dxt+1) and the observation
likelihood given the state, by gt(Yt|xt) are known. The particle filter (PF) [47, 36] is a sequential
Monte Carlo method which produces at each time t, a cloud of n particles, {x(i)

t }n
i=1, whose

empirical measure closely “follows” πt(dxt|Y0:t), the posterior distribution of the state given past
observations (denoted by πt|t(dx)).

The PF was first introduced in [47] as the Bayesian Bootstrap filter and its first application
to tracking in computer vision was the CONDENSATION algorithm [59]. The particle filter
[36] recursively approximates the posterior distribution of the state at any time t given the past
observations, by Monte Carlo sampling. It works for any linear or non-linear, Gaussian or non-
Gaussian dynamical system for which π0, Kt(xt, dxt+1) is known and can be sampled from and
gt(yt|xt) is known.

The PF starts with sampling n times from the initial state distribution π0(dx) to approxi-
mate it by πn

0 (dx) = 1
n

∑n
i=1 δ

x
(i)
0

(dx) and then implements the Bayes’ recursion at each time
step. Now, the distribution of xt−1 given observations up to time t − 1 can be approximated
by πn

t−1|t−1(dx) = 1
n

∑n
i=1 δ

x
(i)
t−1

(dx). The prediction step samples the new state x̄
(i)
t from the

distribution Kt−1(x
(i)
t−1, .). The empirical distribution of this new cloud of particles, πn

t|t−1(dx) =
1
n

∑n
i=1 δ

x̄
(i)
t

(dx) is an approximation to the conditional probability distribution of xt given obser-
vations up to time t− 1 (prediction distribution).

In the update step, each particle is weighted in proportion to the likelihood of the observation
at t, Yt, i.e.

w
(i)
t =

gt(Yt|x̄(i)
t )∑n

i=1 gt(Yt|x̄(i)
t )

π̄n
t|t(dx) = 1

n

∑n
i=1 w

(i)
t δ

x̄
(i)
t

(dx) is then an estimate of πt|t (filtering distribution). One resamples n

times with replacement from π̄n
t|t(dx) to obtain the empirical estimate πn

t|t(dx) = 1
n

∑n
i=1 δ

x
(i)
t

(dx).
Note that both π̄n

t|t and πn
t|t approximate πt|t but the resampling step is used because it increases

the sampling efficiency by eliminating samples with very low weights.

2.4 Optimal Transport

The mass transport problem was first formulated by Gaspar Monge in 1781, and concerned finding
the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one
site to another. This problem was given a modern formulation in the work of Kantorovich [64],
and so is now known as the Monge–Kantorovich problem. The problem of optimal tranpsort has
appeared in econometrics, fluid dynamics, automatic control, transportation, statistical physics,
shape optimization, expert systems, and meteorology [94].

Very importantly optimal transport naturally fits into certain problems in computer vision
[41]. In particular, for the general visual tracking problem, a robust and reliable object and shape
recognition system is of major importance. A key way to carry this out is via template matching,
which is the matching of some object to another within a given catalogue of objects. Typically,
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the match will not be exact and hence some criterion is necessary to measure the “goodness of
fit.” For a description of various matching procedures, see [53] and the references therein. The
matching criterion can also be considered a shape metric for measuring the similarity between two
objects. In fact, in his doctoral thesis [41], Fry uses optimal transport ideas to construct precisely
such a shape metric for planar shapes whose boundaries can be described as closed contours.

2.4.1 Registration and Optimal Transport

We have shown how ideas from optimal transport may be used to formulate a new approach to
image interpolation and in particular, new approaches to the computation of optical flow, image
morphing, and registration.

Image registration is a process of aligning images so that corresponding features can be easily
related. The images may come from different modalities or from the same modality at different
times or both. The collection of papers in [111] gives an excellent overview of the field.

Registration proceeds in several steps. First, each image or data set to be matched should be
individually calibrated, corrected for imaging distortions and artifacts, and cleared of noise. Next,
a measure of similarity between the data sets must be established, so that one can quantify how
close an image is from another after transformations are applied. Such a measure may include
the similarity between pixel intensity values, as well as the proximity of predefined image features
such as implanted fiducials, anatomical landmarks, surface contours, and ridge lines. Next, the
transformation that maximizes the similarity between the transformed images is found. Often this
transformation is given as the solution of an optimization problem where the transformations to
be considered are constrained to be of a predetermined class U . In the case of rigid registration, U
is the set of Euclidean transformations. Many deformations are not of the class (e.g., the swelling
of tissues in the body or the elastic part of the motion of a jelly fish). Therefore a more realistic
and more challenging problem is elastic registration where U is the set of smooth diffeomorphisms.
For example, in the medical imaging context, due to anatomical variability, elastic deformation
maps are also useful when comparing images from different patients. Finally, once an optimal
transformation is obtained, it is used to fuse the image data sets.

2.4.2 Variational Approach to Monge-Kantorovich Problem

There have been a number of algorithms considered for computing an optimal transport map.
For example, methods have been proposed based on linear programming [94], and on Lagrangian
mechanics closely related to ideas from the study of fluid dynamics [13]. An interesting geometric
method has been formulated by Cullen and Purser [29]. In our case for image tracking, an effective,
robust method may be based on gradient descent and the concept of “polar factorization”; see
[15, 42, 76] for details about polar factorizations.

In order to motivate our approach for computing an optimal transport map developed in
our Army Research Office sponsored program, we will consider the specific problem of elastic
registration as in [52, 9] in which the similarity between two images is measured by their L2

Kantorovich–Wasserstein distance. Finding “the best map” from one image to another then leads
to an optimal transport problem.

In the approach of [52] one thinks of a gray scale image as a Borel measure1 µ on some open
domain D ⊂ Rd, where, for any E ⊂ D, the “amount of white” in the image contained in E is
given by µ(E). Given two images (D0, µ0) and (D1, µ1) one considers all maps u : D0 → D1 which
preserve the measures, i.e. which satisfy2

u#(µ0) = µ1, (21)

1This can be physically motivated. For example, in some forms of MRI the image intensity is the actual proton
density.

2If X and Y are sets with σ-algebras M and N , and if f : X → Y is a measurable map, then we write f#µ for

the pushforward of any measure µ on (X,M), i.e., for any measurable E ⊂ Y we define f#µ(E) = µ
(
f−1(E)

)
.
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and one is required to find the map (if it exists) which minimizes the Monge-Kantorovich transport
functional (see the exact definition below).

More precisely, assuming that the cost of moving a mass m from x ∈ Rd to y ∈ Rd is m·Φ(x,y),
where Φ : Rd ×Rd → R+ is called the cost function, Kantorovich [64] defined the cost of moving
the measure µ0 to the measure µ1 by the map u : D0 → D1 to be

M(u) =
∫

D0

Φ(x, u(x)) dµ0(x). (22)

The infimum of M(u) taken over all measure preserving u : (D0, µ0) → (D1, µ1) is called the
Kantorovich–Wasserstein distance between the measures µ0 and µ1. The minimization of M(u)
constitutes the mathematical formulation of the Monge-Kantorovich optimal transport problem.

If the measures µi and Lebesgue measure dL are absolutely continuous with respect to each
other, so that we can write dµi = mi(x)dL for certain strictly positive densities mi ∈ L1(Di,dL),
and if the map u is a diffeomorphism from D0 to D1, then the measure preservation property (21)
is equivalent with mass preservation:

m0(x) = det
(
Du(x)

)
·m1(u(x)), (for almost all x ∈ D0). (23)

The Jacobian equation (23) implies that if a small region in D0 is mapped to a larger region in
D1, there must be a corresponding decrease in density in order to comply with mass preservation.
In other words, expanding an image darkens it.

The L2 Monge–Kantorovich problem corresponds to the cost function Φ(x,y) = 1
2‖x− y‖2. A

fundamental theoretical result for the L2 case [15, 43, 70] is that there is a unique optimal mass
preserving u, and that this u is characterized as the gradient of a convex function p, i.e., u = ∇p.
General results about existence and uniqueness may be found in [4] and the references therein.

To reduce the Monge–Kantorovich cost M(u) of a map u0 : D0 → D1, in [52] we consider a
rearrangement of the points in the domain of the map in the following sense: the initial map u0 is
replaced by a family of maps ut for which one has ut ◦ st = u0 for some family of diffeomorphisms
st : D0 → D0. If the initial map u0 sends the measure µ0 to µ1, and if the diffeomorphisms st

preserve the measure µ0, then the maps ut = u0 ◦ (st)−1 will also send µ0 to µ1.
Any sufficiently smooth family of diffeomorphisms st : D0 → D0 is determined by its velocity

field, defined by ∂ts
t = vt ◦ st.

If ut is any family of maps, then, assuming ut
#µ0 = µ1 for all t, one has

d
dt

M(ut) =
∫

D0

〈
Φx(x, ut(x)), vt(x)

〉
dµ0(x). (24)

The steepest descent is achieved by a family st ∈ Diff1
µ0

(D0), whose velocity is given by

vt = − 1
m0(x)

P
(
Φx(x, ut(x))

)
. (25)

Here P is the Helmholtz projection, which extracts the divergence-free part of vector fields on D0,
i.e., for any vector field w on D one has w = P[w] +∇p.

From u0 = ut ◦ st one gets the transport equation

∂ut

∂t
+ vt · ∇ut = 0 (26)

where the velocity field is given by (25). In [9], it is shown that the initial value problem (25),
(26) has short time existence for C1,α initial data u0, and a theory of global weak solutions in the
style of Kantorovich is developed.
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For image registration, it is natural to take Φ(x,y) = 1
2‖x−y‖2 and D0 = D1 to be a rectangle

[52]. Extensive numerical computations show that the solution to the unregularized flow converges
to a limiting map for a large choice of measures and initial maps. Indeed, in this case, we can
write the minimizing flow in the following “nonlocal” form:

∂ut

∂t
= − 1

m0

{
ut +∇(−∆)−1 div(ut)

}
· ∇ut. (27)

The technique has been mathematically justified in [9] to which we refer the reader for all of
the relevant details.

2.4.3 Other Applications of Optimal Transport

In our research, we focused on the uses of ideas from optimal transport for problems in controlled
active vision and visual tracking. However, given the potential power of these ideas in systems
and control, we would like to list some other applications of Monge-Kantorovich:

1. Lyapunov theory is essential is studying nonlinear system stability and controller synthesis.
In some very interesting work, Rantzer [95] has formulated a dual to Lyapunov’s second
theorem. The idea is that the Lyapunov function is regarded as the “cost to go” in an
optimal transport problem and is dual (in the sense of linear programming) to the density
function typically studied in Monge-Kantorovich theory. These ideas give a powerful new
tool in studying nonlinear system analysis.

2. Shape optimization is another area of use for optimal transport [39]. For example, given
two densities and an insulating medium into which we place a fixed amount of conducting
material one can consider the problem of the optimal placement of the conducting material
to minimize the heating induced by the flow. This can be put into the Monge-Kantorovich
optimal transport framework. Similar remarks apply to problems in compression molding,
where one considers an incompressible plastic material being pressed being two plates in
which one wants to track the air-plastic interface.

3. One of the most beautiful applications of optimal transport is in meteorology, in particular,
semigeostrophic models. These are concerned with with large scale stratified flows and front
formation [29]. The idea is that meteorologists want to model how fronts arise in large-scale
weather patterns. Tracking such fronts is a key goal, and semigeostrophic equations seem to
give a reasonable mathematical model for the creation of such fronts. This leads naturally
to optimal mass transport equations.
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